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ABSTRACT 

A subgroup H of an analytic group G is said to be analytically dense if the only 
analytic subgroup of G containing H is G itself. The main purpose of this paper 
is to give sufficient conditions on G (analogous to those of [8], [9], and 17] in the 
case of Zariski density) which guarantee the analytic density of cofinite volume 
subgroups H. First we consider the case of arbitrary cofinite volume subgroups 
(Theorem 5 and its corollaries). Then we specialize to lattices, and prove the 
following result (Theorem 8): Let G be an analytic group whose radical is simply 
connected and whose Levi factor has no compact part and a finite center. Then 
any lattice in G is analytically dense. In proving this use is made of a result of 
Montgomery which also implies that for any simply connected solvable group, 
cocompactness of a closed subgroup implies analytic density. In the case of a 
solvable group with real roots this means analytic density and cocompactness 
are equivalent and thus completes a circle of ideas raised in Saito [13]. In 
Corollary 9 we deal with a related local condition. Finally in Theorem l0 and its 
corollaries we apply these considerations to prove a homomorphism extension 
theorem and an isomorphism theorem for l-dimensional cohomology. 

In Mosak  and Moskowitz  [7] we ex tended  the density theorems  of [8] and [9] 

f rom algebraic to analytic linear groups.  In  the present  paper ,  instead of 

considering Zariski density,  we consider  the analogous  but not  equivalent  not ion 

of  analytic density which is defined as follows: A subgroup  H of an analytic 

g roup  G is said to be analy t ica l ly  dense if the only analytic subgroup of  G 

containing H is G itself. This concept  was first studied (for solvable groups,  

under  the name  "ful l")  by Mos tow [10] and later by Saito [13]. In the case of  

simply connec ted  nilpotent  groups  the fact that  the not ions  of analytic and 

Zariski density coincide is a basic result of  Malcev (see e.g. [11] T h e o r e m s  

2.1-2.3). On  the o ther  hand,  as was pointed  ou t  in [8, p. 25], if G is a solvable 

analytic linear g roup  all of whose  eigenvalues are real, then analytic density of H 
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is equivalent to compactness of G/H, but is stronger than Zariski density of H. 

Our main purpose here is to give sufficient conditions on G (analogous to those 

of [8], [9], and [7] in the case of Zariski density) which guarantee the analytic 

density of cofinite volume subgroups H. 

First we consider the case of arbitrary cofinite volume subgroups (Theorem 5 

and, its corollaries). Then we specialize to lattices, and prove the following result 

(Theorem 8): Let G be an analytic group whose radical R is simply connected 

and such that the Levi factor S has no compact factors and a finite center. Then 

any lattice in G is analytically dense. In proving this, use is made of a result of 

Montgomery [6] which also implies (see Remark 2 following Theorem 8) that for 

any simply connected solvable group, with real roots or not, cocompactness of a 

closed subgroup implies analytic density. In the case of a solvable group with real 

roots this means analytic density and cocompactness are equivalent and this 

completes a circle of ideas raised in Saito [13]. In Corollary 9 we deal with a 

related local condition. Finally in Theorem 10 and its corollaries we apply these 

considerations to prove a homomorphism extension theorem which generalizes 

and unifies a classical result of Malcev ([11], Chap. 2) for uniform subgroups of 

simply connected nilpotent groups, and a result of Saito ([13] p. 166) which was 

rediscovered by Gorbacevic [1], for lattices in simply connected solvable groups 

with real roots. In addition we prove an isomorphism theorem for 1-dimensional 

cohomology which generalizes our corresponding result in [7] as well as that of 

van Est (see [11] p. 122). In a subsequent paper we will give a number of 

applications of these results. 

We begin with some preliminaries. 

LEMMA 1. Let G be an analytic group with a semi-direct product decomposi- 
tion G = R xoS where R is the radical of G and S is a Levi factor. Suppose also 
that R is simply connected. Then a maximal compact subgroup of S is a maximal 

compact of G. 

PaOOF. Let K be a maximal compact of G, and let 9:  G---~G/R be the 

canonical projection. Then zr Ix is 1:1, since simple connectivity of R implies 

that K fq R = (1) ([4], p. 138). Thus dim K = dim 7r(K)_--- dim(max compact of 

S) =< dim(max compact of G). Since maximal compacts are connected, a 

maximal compact of S must be a maximal compact of G. 

The following lemma is well-known, but a proof seems hard to find in the 

literature. 

LEMMA 2. Let G an analytic group with H and K analytic subgroups and K 
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normal. Then G = H K  if and only i[ g=l)+ ~, where g, I), and ~ are the 
corresponding Lie algebras. 

PROOF. Suppose G = HK. Let H x K act on G by (h, k)g = hgk -~. Since 

0,×K(1) = H K  = G this action is transitive and hence by Th. 2.5 Chap. 1 of [4], 

G is H × K-equivariantly homeomorphic with H x K/Stab,×K (1). In particular 

the multiplication map H × K ~ G is open. Let U be a canonical neighborhood 

of 1 in G and V small enough so that W C_U. Let 1 / , = H A V  and 

VK = K f3 V. Then these are canonical neighborhoods in H and K respectively 

and by the above V ,  VK contains a neighborhood W of 1 in G which is canonical 

since W C_ V 2 C_ U. If g = exp X is in W then g = hk where h ~ V,  and k E VK. 

Hence exp X = exp Y.  exp Z where Y E I) and Z ~ f. But the latter is 

exp(Y + Z + ½[ Y, Z]  + . . . )  = exp(Y + Z')  where Z '  E 

since ~ is an ideal. By taking Y and Z small enough, exp(Y + Z ' )  ~ U. It follows 

that X = Y + Z' .  This proves the claim for small X. By scaling we see that 

g = t~+ ~. 

Conversely suppose g = I) + ~ and g E U. Then g = exp X where X is near 0. 

By assumption X = Y + Z where Y E I) and Z E ~ are near enough to 0 for the 

Campbell-Hausdortt  series to converge. Accordingly 

e x p ( -  Y)g = e x p ( -  Y)exp(Y + Z)  = exp(Z +½[ - Y, Y + Z]  + . . . ) .  

Now [ - Y, Y + Z]  = [Z, Y] E t and similarly all subsequent terms are in t, since 

is an ideal. Thus e x p ( -  Y)g equals exp(Z + Z ' )  where Z ' E  f. This means 

g = exp Y.  exp(Z + Z') ~ H K  for each g ~ U. Now since U generates G and K 
is normal, G = HK. 

PROPOSmON 3. Let G be an analytic group with R simply connected, and S 
having finite center. If L is a dense analytic subgroup of G, then L = G. 

PROOF. By Lemma 3.1 of [3] (slightly adjusted from the linear case), since S 

has finite center and R is simply connected, the Levi decomposition of G is 

semi-direct. Let K be a maximal compact subgroup of S, which by Lemma 1 is a 

maximal compact of G. By Goto [2, Th. 1], G = L .  T, where T = rad(K) C_ S is a 

torus. Thus G also equals LS. But L is normal ([4], p. 190), so by Lemma 2 we 

have g = l + t  and g = l + s .  Hence g/l is abelian, on the one hand, and 

semisimple, on the other. If follows that G = L. 

REMARK. As the proof shows, the hypothesis that Z(S)  is finite is unneces- 

sarily strong, and is used only to ensure that the Levi decomposition is 
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semi-direct. Nevertheless, for convenience, we will continue to assume that Z(S)  

is finite in the sequel. 

A complex analytic subgroup of GI(n,C) is called reductive if all its finite 

dimensional holomorphic representations are completely reducible. An alterna- 
tive characterization of such a group is the following: G is reductive if and only if 

its Lie algebra is reductive and Z(G)o, the identity component of the center, is 
diagonalizable. 

LEMMA 4. A normal analytic subgroup L o[ a complex reductive group G is 

itsel[ reductive. 

PROOF. Let I be the Lie algebra of L. It is easy to see that I is reductive, and 

that ~(I) C_ Jig), where g is the Lie algebra of G. Hence Z(L)o C_ Z(G)o. Since the 

lafter is diagonalizable so is the former. 

We now turn to closed subgroups of cofinite volume. 

THEOaEM 5. Let G be an analytic group whose radical R is simply connected, 

and whose Levi [actor S has a finite center and no compact [actor. If Ad(G) is 
minimally quasibounded (see [7]) then any closed subgroup H o[ cofnite volume 

in G is analytically dense. 

COROLLARY 6. Let G be a real analytic group where R is simply connected, 
and S has no compact part. Then closed subgroups o[ cofnite volume are 
analytically dense in G under any o[ the [oilowing additional hypotheses: 

(1) G is semisimple. 
(2) S has finite center, and G, or even Ad(G), is m.a.p. 
(3) G is a subgroup o[ GI(V), and R acts on V with real eigenvalues. 

COaOLLARY 7. Let G be a complex analytic group. Then closed subgroups H 

o[ cofnite volume in G are analytically dense in either o[ the [ollowing two cases: 

(1) G has a simply connected radical. 

(2) G is linear and reductive. 

PROOF OF THEOREM 5. Let L be an analytic subgroup of G containing H. To 

prove L = G we may assume L is closed, for otherwise, Proposition 3 shows that 

we may replace L by its closure. Furthermore, since H normalizes L, the density 

theorem [7, Th. 3.4] shows that L is normal in G. Therefore, G/L  is a compact 
group, and since S is m.a.p., S maps trivially into G/L. Thus S C L, so 
G = RS = RL; hence GfL = R / R  N L, and G/L must be a torus. On the other 
hand, as in the proof of Proposition 3, G = R xoS. Since L contains S, this 
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implies that L is the semi-direct product (R O L)xoS, so R O L is connected. 

Since R is simply connected, so is R / R  O L = G/L. Therefore G = L. 

PROOF OF COROLLARY 6. By the remark following Proposition 3, the 
hypothesis that Z(S)  is finite may be replaced by the hypothesis that G has a 

semi-direct product Levi decomposition. This proves (1). For (2), if Ad(G) is 

m.a.p, then it certainly has no rational homomorphisms into compact groups, 
and is therefore minimally quasibounded [7, Th. 2.5]. Now A d ( G ) =  

Ad(R)Ad(S) is the Levi decomposition of Ad(G), and the hypothesis implies 

that Ad(S) has no compact part. Since Ad(S) = S/S N Z ( G )  and S N Z ( G )  is a 

discrete central subgroup of S, this means S also has no compact factors. Thus 

(2) follows from Theorem 5. For (3), [7, Prop. 2.10] implies that G is minimally 

quasibounded, hence so is Ad(G). Also, R is simply connected by [8], and Z(S)  
is finite. Hence (3) also follows from Theorem 5. 

PROOFOF COROLLARY 7. For 1, by [4, Ch. 18, Th. 4.6], O is linear, and Ad(G) 

is minimally quasibounded [7, 2.10]; also S has no compact factors. Therefore (1) 
follows from Theorem 5. For (2), let L be an analytic subgroup of G containing 

H. Arguing as in the proof of Theorem 5, we see that L is a normal analytic 
subgroup of G and as such is itself reductive by Lemma 4. But a reductive 
complex analytic linear group is algebraic/R and in particular is Euclidean 

closed. Therefore G/L is compact. Since G is algebraic and L is a normal 

algebraic subgroup, G/L has a faithful C-rational linear representation (see [5]). 

In particular G/L is.a complex analytic linear group. Since it is compact it is a 
point. 

Our previous results concerned arbitrary closed cofinite volume subgroups. In 
the case of lattices certain strengthenings can be made. 

THEOREM 8. Let G be an analytic group whose radical R is simply connected 

and whose Levi factor S has finite center and no compact part. Then any lattice F 
is analytically dense in G. 

PROOF. Let L be an analytic subgroup containing F. By Proposition 3 we 

may assume that L is closed. By a result of H. C. Wang (see Cor. 8.27 of [11]) 

R n F is a lattice in R and It(F) is a lattice in G / R  where or: G - ~  G/R  is the 

canonical map. From this it follows that R / R  A L is compact and ~'(F)C_ 

~r(L)C_ G/R. Since It(L) is connected it equals G/R  by the semisimple case 

(Corollary 6) so G = LR. But then G/L = L R / L  = R / R  n L, a compact 
manifold. Now let Its be the restriction of 1r to S. Then ~'s maps S onto G/R  
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( = L R / R  = L / L  O R since R is normal) while Ker Its = R n S, a discrete 

central subgroup of S. This means lrs is a covering map and S is locally 

isomorphic to L / L  n R. Let ~, I, and r be the respective Lie algebras. Then 
-~ I/I N t. since I N r is a solvable ideal in I and t/I n r is semisimple, the exact 

sequence 

(0)--,I n r  I I/I n (0) 

splits by the Levi theorem. Hence ! has a subalgebra ~' ~ ~; s' is a Levi factor of g 

because it is semisimple and of maximal dimension. This means L D S', a Levi 

factor of G. Let K be a maximal compact subgroup of S'. By Lemma 1 K is a 

maximal compact subgroup of G;  also G / L  is compact, and L is connected. 

Thus by Montgomery [6], G = K L  = L (since L _D S' _D K). 

REMARKS. (1) For the proof of Theorem 8 it is clearly necessary to know that 

the assertion G = K L  of [6] is actually valid for an arbitrary maximal compact K 

of G. This follows from Theorem A of [6], which states that if G has a compact 

homogeneous space X = G/L,  with connected stability group L, then some 

(maximal) compact subgroup Ko of G acts transitively on X. For then clearly any 

maximal compact K = gKog-' acts transitively on X, so G = KL. 

(2) Since a simply connected solvable group has no nontriviai compact 

subgroups, the result of [6] implies that if G is any simply connected solvable 
group and H is a closed, cocompact subgroup then H is analytically dense. 

In both Theorems 5 and 8 the conditions that R be simply connected and S 

have no compact factors are clearly necessary. It is not obvious if the same may 

be said of the hypothesis that the Levi decomposition splits. This condition, in 

the somewhat stronger form that Z ( S )  is finite, has already been encountered in 

related problems in, for example, [3]. These hypotheses will pose no problem in 

the applications we envisage, as they will be to subgroups of Gl(g). 

Next we consider a notion related to, but distinct from analytic density. 

DEFXNmON 9. Let G be a real or complex analytic group, and H be a 

subgroup. We shall say that H is locally dense if 

I(H) = lin. sp.k {X E g: exp~ X E H} 

equals g. Here k = R or C respectively. 

For a closed subgroup H, even with cofinite volume, local density need not 

imply analytic density, as is shown by the example, G a compact group and H a 

point. 
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COROLLARY 9. Let G be a solvable analytic group with real roots, or Gl(n,C). 

If H is a closed subgroup with G / H  of [inite volume, then H is locally dense. 

PROOF. In the solvable case by a simple covering group argument we may 

assume that G is simply connected. This implies that G is a linear group. Next 

we observe that in either case I = I(H) is an ideal in g. For if exp X E H and 

h ~ H  then e x p A d h ( X ) = h e x p X h - ~ E H .  Thus l is Ad(H)-stable. By the 

density theorem [7] 1 is Ad(G)-stable, so taking infinitesimal generators shows 

that I is ad(g)-stable and so an ideal. Let L be the corresponding (normal) 

analytic subgroup. Now expo is surjective. In the solvable case this is a result of 

Saito [12]. In the case of Gl(n, C) this is well known. In both cases, therefore, H 

is contained in the range of the exponential map, so HC_ L. Since H is 

analytically dense by Remark 2 above or Corollary 7, respectively, L = G. 

Therefore ( = g. 

We remark that by the same argument Corollary 9 also holds for any Lie 

group covered by Gi(n,C). 

THEOREM 10. Let G and G* be simply connected solvable groups with real 
roots, and let H be a closed cocompact subgroup of G. Then each smooth 
homomorphism q~: H---~G* extends to a unique smooth homomorphism 
c~: G ---~ G*. 

PROOFOF UNIQUENESS. Let q~ and q)' be two such extensions and dqb and dcI)' 

be the corresponding differentials mapping g-~fl*. Since q) exp =expdq~, 
qb'exp=expdqb',  and exp is bijective, d ~  and dq)' agree on log(H). By 
Corollary 9, log(H) generates g, so el)= ~'. 

PROOF OF EXISTENCE. Let ~" and ¢r* denote the projections from G × G* 

onto G and G*, respectively. Now G x G* is a simply connected solvable group 
with real roots. Since t¢ is continuous its graph is a closed subgroup G x G* (and 

H is isomorphic with graph q~ under the maph---~(h, tp(h)). Let L be the 

analytic hull of graph ~p in G x G *  (see [11]) and ~b=rr]L. Then ~b is a 

smooth homomorphism L ~ G so that +(L) is an analytic subgroup of G. But 

~b(L) clearly contains H. Since H is analytically dense in G by Remark 2 above, 

~b(L) = G. Now ~b induces a diffeomorphism L/~b-I(H)-~ G/H. If we knew that 

~b-l(H)=graph~p then d im(L) -d im(graphq~)=d im(G)-d im(H) .  But then 

dim(L) = dim(G) so that Ker ~b would be discrete and ~b a covering map. Since 

G is simply connected this means ~b is an isomorphism. Now let ~ =  

zr* IL" ~ b-~: G---~G*. Then • is a smooth homomorphism and qbl~ = q~. 
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To see that ~k-'(H) = graph ¢, suppose (g, g*) ~ L and @(g, g*) = g E H. 
Then we show g* = q~(g). Since the exponential map for G x G* is given by 

(expo, expo.) we have (g, g*) = (exp X, exp X*) E L where X E g and X* E g*. 

But L is the smallest analytic subgroup of G x G* containing graph q~, therefore 

by Proposition 6 of Saito [13] we have (X ,X*)=Et i (Y~,  Y*) where t~ ~ R ,  

Y~ E g, Y* E g*, and q~(exp Y~)=exp Y*~ for i =  1,.. . ,n. Therefore q~(Y~) = 

Y* for all i. Since X=Et~Y ,  and X* =Et iY*  we have q~(X)=Et~¢(Y~)= 

E t~Y*~ = X*. This means ¢(g)  = g*. 

COROLLARY 11. Let G be a simply connected solvable group with real roots, 
and let H be a closed subgroup with G / H  compact. Then any automorphism a of 
H extends uniquely to an automorphism [3 of G. 

PROOF. a extends to a unique smooth homomorphism /3 by Theorem 10. 

Now /3(G)_D/3(H)= H so /3(G) is an analytic subgroup of G containing H. 

Since H is analytically dense in G by Remark 2, /3(G)= G. So Ker/3 is a 

discrete central subgroup of G and /3 is a covering map. Since G is simply 

connected,/3 must be an automorphism of G. 

As a final application of theorem 10 we prove a generalization of part of a 

result in [7], namely Proposition 3.2 in the case of 1-cocycles. In what follows V 

is a real vector space, G is a subgroup of GI(V), and cocyles are taken with 

respect to the natural action. 

COROLLARY 12. Let G be a simply connected solvable subgroup of GI(V) with 
real roots and H be a closed cocompact subgroup. Then each smooth 1-cocycle 
~: H---* V extends to a unique smooth 1-cocycle of G with values in V. In other 
words, the restriction map H1(G, V)--* HI(H, V) is an isomorphism. 

PROOF. Consider the simply connected solvable group G x~d V and its Lie 

algebra g+~d V. An easy calculation shows that Ad~g.o~(X,w)= 

(Adg (X), (I - Adg (X))v + g .  w). In particular this implies that G ×i~ V has only 

real roots. Now the maph---~(h,q~(h)) is a smooth homomorphism of 

H---~ G ×ia V which extends by Theorem 10 to a unique smooth homomorphism 

• : G ---* G xia V. Let 1to and cry be the projections on G and V respectively. 

Then fro • • is a smooth homomorphism from G ~ G whose restriction to H is 

the identity and so by Theorem 10 is the identity on G. Let ~ = Try • ~ ;  then 
[, = ¢ and since ~(g)  = (g, ~(g)) and tl, is a homomorphism, ~b is a 1-cocycle. 

Because • is unique so is ~b. 
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