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ABSTRACT

A subgroup H of an analytic group G is said to be analytically dense if the only
analytic subgroup of G containing H is G itself. The main purpose of this paper
is to give sufficient conditions on G (analogous to those of [8], [9], and [7] in the
case of Zariski density) which guarantee the analytic density of cofinite volume
subgroups H. First we consider the case of arbitrary cofinite volume subgroups
(Theorem 5 and its corollaries). Then we specialize to lattices, and prove the
following result (Theorem 8): Let G be an analytic group whose radical is simply
connected and whose Levi factor has no compact part and a finite center. Then
any lattice in G is analytically dense. In proving this use is made of a result of
Montgomery which also implies that for any simply connected solvable group,
cocompactness of a closed subgroup implies analytic density. In the case of a
solvable group with real roots this means analytic density and cocompactness
are equivalent and thus completes a circle of ideas raised in Saito [13]. In
Corollary 9 we deal with a related local condition. Finally in Theorem 10 and its
corollaries we apply these considerations to prove a homomorphism extension
theorem and an isomorphism theorem for 1-dimensional cohomology.

In Mosak and Moskowitz [7] we extended the density theorems of [8] and [9]
from algebraic to analytic linear groups. In the present paper, instead of
considering Zariski density, we consider the analogous but not equivalent notion
of analytic density which is defined as follows: A subgroup H of an analytic
group G is said to be analytically dense if the only analytic subgroup of G
containing H is G itself. This concept was first studied (for solvable groups,
under the name “‘full”’) by Mostow [10] and later by Saito [13]. In the case of
simply connected nilpotent groups the fact that the notions of analytic and
Zariski density coincide is a basic result of Malcev (see e.g. [11] Theorems
2.1-2.3). On the other hand, as was pointed out in [8, p. 25], if G is a solvable
analytic linear group all of whose eigenvalues are real, then analytic density of H
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is equivalent to compactness of G/H, but is stronger than Zariski density of H.
Our main purpose here is to give sufficient conditions on G (analogous to those
of [8], [9], and [7] in the case of Zariski density) which guarantee the analytic
density of cofinite volume subgroups H.

First we consider the case of arbitrary cofinite volume subgroups (Theorem 5
and. its corollaries). Then we specialize to lattices, and prove the following result
(Theorem 8): Let G be an analytic group whose radical R is simply connected
and such that the Levi factor S has no compact factors and a finite center. Then
any lattice in G is analytically dense. In proving this, use is made of a result of
Montgomery [6] which also implies (see Remark 2 following Theorem 8) that for
any simply connected solvable group, with real roots or not, cocompactness of a
closed subgroup implies analytic density. In the case of a solvable group with real
roots this means analytic density and cocompactness are equivalent and this
completes a circle of ideas raised in Saito [13]. In Corollary 9 we deal with a
related local condition. Finally in Theorem 10 and its corollaries we apply these
considerations to prove a homomorphism extension theorem which generalizes
and unifies a classical result of Malcev ([11], Chap. 2) for uniform subgroups of
simply connected nilpotent groups, and a result of Saito ({13] p. 166) which was
rediscovered by Gorbacevic [1], for lattices in simply connected solvable groups
with real roots. In addition we prove an isomorphism theorem for 1-dimensional
cohomology which generalizes our corresponding result in [7] as well as that of
van Est (see [11] p. 122). In a subsequent paper we will give a number of
applications of these results.

We begin with some preliminaries.

Lemma 1. Let G be an analytic group with a semi-direct product decomposi-
tion G = R X, S where R is the radical of G and S is a Levi factor. Suppose also
that R is simply connected. Then a maximal compact subgroup of S is a maximal
compact of G.

Proor. Let K be a maximal compact of G, and let 7: G— G/R be the
canonical projection. Then 7 | x is 1:1, since simple connectivity of R implies
that KN R = (1) ([4], p. 138). Thus dim K = dim #(K) = dim(max compact of
$)=dim(max compact of G). Since maximal compacts are connected, a
maximal compact of S must be a maximal compact of G.

The following lemma is well-known, but a proof seems hard to find in the
literature.

LemMmA 2. Let G an analytic group with H and K analytic subgroups and K
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normal. Then G = HK if and only if g=0)+%, where g, 1), and t are the
corresponding Lie algebras.

Proor. Suppose G = HK. Let HX K act on G by (h, k)g = hgk™". Since
61xx (1) = HK = G this action is transitive and hence by Th. 2.5 Chap. 1 of [4],
G is H X K-equivariantly homeomorphic with H X K/Staby.« (1). In particular
the multiplication map H X K — G is open. Let U be a canonical neighborhood
of 1 in G and V small enough so that V’CU. Let V4=HNYV and
Vk = K N V. Then these are canonical neighborhoods in H and K respectively
and by the above ViV contains a neighborhood W of 1 in G which is canonical
since W C V*C U.If g =exp X isin W then g = hk where h € V,; and k € Vk.
Hence exp X =exp Y -exp Z where Y €]) and Z €¥. But the latter is

exp(Y+Z+Y,Z]+ - )=exp(Y+ Z') where Z'E1

since T is an ideal. By taking Y and Z small enough, exp(Y + Z') € U. It follows
that X =Y + Z'. This proves the claim for small X. By scaling we see that
g=h+t

Conversely suppose g =0+ T and g € U. Then g = exp X where X is near 0.
By assumption X = Y + Z where Y €] and Z €1 are near enough to 0 for the
Campbell-Hausdorff series to converge. Accordingly

exp(— Y)g =exp(— Y)exp(Y+Z)=exp(Z +i[- Y, Y + Z]+-- ).

Now [— Y, Y+ Z] =[Z, Y] €1 and similarly all subsequent terms are in £, since
t is an ideal. Thus exp(— Y)g equals exp(Z + Z') where Z'&¥. This means
g =exp Y -exp(Z + Z') € HK for each g € U. Now since U generates G and K
is normal, G = HK.

ProPosSITION 3. Let G be an analytic group with R simply connected, and S
having finite center. If L is a dense analytic subgroup of G, then L = G.

Proor. By Lemma 3.1 of [3] (slightly adjusted from the linear case), since S
has finite center and R is simply connected, the Levi decomposition of G is
semi-direct. Let K be a maximal compact subgroup of S, which by Lemma 1 is a
maximal compact of G. By Goto 2, Th. 1], G =L - T, where T =rad(K)C Sisa
torus. Thus G also equals LS. But L is normal ([4], p. 190), so by Lemma 2 we
have g=1+t and g=1+s. Hence g/l is abelian, on the one hand, and
semisimple, on the other. If follows that G = L.

REMARK. As the proof shows, the hypothesis that Z(S) is finite is unneces-
sarily strong, and is used only to ensure that the Levi decomposition is
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semi-direct. Nevertheless, for convenience, we will continue to assume that Z(S)
is finite in the sequel.

A complex analytic subgroup of Gl(n,C) is called reductive if all its finite
dimensional holomorphic representations are completely reducible. An alterna-
tive characterization of such a group is the following: G is reductive if and only if
its Lie algebra is reductive and Z(G),, the identity component of the center, is
diagonalizable.

LeEmMMA 4. A normal analytic subgroup L of a complex reductive group G is
itself reductive.

ProOOF. Let I be the Lie algebra of L. It is easy to see that I is reductive, and
that 3(I) C 3(g), where g is the Lie algebra of G. Hence Z(L ), C Z(G),. Since the
lafter is diagonalizable so is the former.

We now turn to closed subgroups of cofinite volume.

THEOREM 5. Let G be an analytic group whose radical R is simply connected,
and whose Levi factor S has a finite center and no compact factor. If Ad(G) is
minimally quasibounded (see [7]) then any closed subgroup H of cofinite volume
in G is analytically dense.

COROLLARY 6. Let G be a real analytic group where R is simply connected,
and S has no compact part. Then closed subgroups of cofinite volume are
analytically dense in G under any of the following additional hypotheses :

(1) G is semisimple.

(2) S has finite center, and G, or even Ad(G), is m.a.p.

(3) G is a subgroup of GI(V), and R acts on V with real eigenvalues.

COROLLARY 7. Let G be a complex analytic group. Then closed subgroups H
of cofinite volume in G are analytically dense in either of the following two cases:

(1) G has a simply connected radical.

(2) G is linear and reductive.

ProoF OF THEOREM 5. Let L be an analytic subgroup of G containing H. To
prove L = G we may assume L is closed, for otherwise, Proposition 3 shows that
we may replace L by its closure. Furthermore, since H normalizes L, the density
theorem [7, Th. 3.4] shows that L is normal in G. Therefore, G/L is a compact
group, and since S is m.a.p., S maps trivially into G/L. Thus SCL, so
G = RS = RL ;hence G/L = R/R N L, and G/L must be a torus. On the other
hand, as in the proof of Proposition 3, G = R X, S. Since L contains S, this
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implies that L is the semi-direct product (R N L)X,S, so R N L is connected.
Since R is simply connected, so is R/R N L = G/L. Therefore G = L.

ProorF oF CoroLrArY 6. By the remark following Proposition 3, the
hypothesis that Z(S) is finite may be replaced by the hypothesis that G has a
semi-direct product Levi decomposition. This proves (1). For (2), if Ad(G) is
m.a.p. then it certainly has no rational homomorphisms into compact groups,
and is therefore minimally quasibounded [7, Th. 2.5]. Now Ad(G)=
Ad(R)AA(S) is the Levi decomposition of Ad(G), and the hypothesis implies
that Ad(S) has no compact part. Since Ad(S)=S/SNZ(G)and SN Z(G)isa
discrete central subgroup of S, this means $ also has no compact factors. Thus
(2) follows from Theorem 5. For (3), [7, Prop. 2.10] implies that G is minimally
quasibounded, hence so is Ad(G). Also, R is simply connected by [8], and Z(S)
is finite. Henc= (3) also follows from Theorem 5.

Proor oF CoroLLARY 7. For 1, by {4, Ch. 18, Th. 4.6}, G is linear, and Ad(G)
is minimally quasibounded [7, 2.10]; also S has no compact factors. Therefore (1)
follows from Theorem 5. For (2), let L be an analytic subgroup of G containing
H. Arguing as in the proof of Theorem 5, we see that L is a normal analytic
subgroup of G and as such is itself reductive by Lemma 4. But a reductive
complex analytic linear group is algebraic/R and in particular is Euclidean
closed. Therefore G/L is compact. Since G is algebraic and L is a normal
algebraic subgroup, G/L has a faithful C-rational linear representation (see [5]).
In particular G/L is-a complex analytic linear group. Since it is compact it is a
point.

Our previous results concerned arbitrary closed cofinite volume subgroups. In
the case of lattices certain strengthenings can be made.

THEOREM 8. Let G be an analytic group whose radical R is simply connected
and whose Levi factor S has finite center and no compact part. Then any lattice T
is analytically dense in G.

Proor. Let L be an analytic subgroup containing I'. By Proposition 3 we
may assume that L is closed. By a result of H. C. Wang (see Cor. 8.27 of [11})
R NT is alattice in R and «(I') is a lattice in G/R where 7: G — G/R is the
canonical map. From this it follows that R/R N L is compact and =(I')C
w(L)C G/R. Since w(L) is connected it equals G/R by the semisimple case
(Corollary 6) so G=LR. But then G/L=LR/L=R/RNL, a compact
manifold. Now let &5 be the restriction of o to S. Then s maps S onto G/R
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(=LR/R=L/LNR since R is normal) while Kerms = RN S, a discrete
central subgroup of S. This means o5 is a covering map and S is locally
isomorphic to L/L N R. Let s, I, and r be the respective Lie algebras. Then
s={/INt. since [Nt is a solvable ideal in | and /1N is semisimple, the exact
sequence

O)—=1Nr—I-iNnt—(0)

splits by the Levi theorem. Hence [ has a subalgebra s' =s; s’ is a Levi factor of g
because it is semisimple and of maximal dimension. This means L D S, a Levi
factor of G. Let K be a maximal compact subgroup of S’. By Lemma 1 K is a
maximal compact subgroup of G; also G/L is compact, and L is connected.
Thus by Montgomery [6], G =KL =L (since L D S’ D K).

RemARks. (1) For the proof of Theorem 8 it is clearly necessary to know that
the assertion G = KL of [6] is actually valid for an arbitrary maximal compact K
of G. This follows from Theorem A of [6], which states that if G has a compact
homogeneous space X = G/L, with connected stability group L, then some
(maximal) compact subgroup K, of G acts transitively on X. For then clearly any
maximal compact K = gK,g™' acts transitively on X, so G = KL.

(2) Since a simply connected solvable group has no nontrivial compact
subgroups, the result of [6] implies that if G is any simply connected solvable
group and H is a closed, cocompact subgroup then H is analytically dense.

In both Theorems 5 and 8 the conditions that R be simply connected and §
have no compact factors are clearly necessary. It is not obvious if the same may
be said of the hypothesis that the Levi decomposition splits. This condition, in
the somewhat stronger form that Z(S) is finite, has already been encountered in
related problems in, for example, [3]. These hypotheses will pose no problem in
the applications we envisage, as they will be to subgroups of Gl(g).

Next we consider a notion related to, but distinct from analytic density.

DEerINITION 9. Let G be a real or complex analytic group, and H be a
subgroup. We shall say that H is locally dense if

I(H)=lin.sp..{X €g: expc X € H}
equals g. Here k =R or C respectively.

For a closed subgroup H, even with cofinite volume, local density need not
imply analytic density, as is shown by the example, G a compact group and H a
point.
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CorOLLARY 9. Let G be a solvable analytic group with real roots, or Gl(n,C).
If H is a closed subgroup with G/H of finite volume, then H is locally dense.

Proor. In the solvable case by a simple covering group argument we may
assume that G is simply connected. This implies that G is a linear group. Next
we observe that in either case I=1(H) is an ideal in g. For if exp X € H and
h€H then expAd,(X)=hexpXh™' € H Thus | is Ad(H)-stable. By the
density theorem [7] I is Ad(G)-stable, so taking infinitesimal generators shows
that T is ad(g)-stable and so an ideal. Let L be the corresponding (normal)
analytic subgroup. Now expg is surjective. In the solvable case this is a result of
Saito [12]. In the case of Gl(n, C) this is well known. In both cases, therefore, H
is contained in the range of the exponential map, so HC L. Since H is
analytically dense by Remark 2 above or Corollary 7, respectively, L = G.
Therefore 1=g.

We remark that by the same argument Corollary 9 also holds for any Lie
group covered by Gi(n, C).

THeoREM 10. Let G and G* be simply connected solvable groups with real
roots, and let H be a closed cocompact subgroup of G. Then each smooth
homomorphism ¢: H->G* extends 10 a unique smooth homomorphism
P G- G*.

ProoF OF UNIQUENESS.  Let @ and @' be two such extensions and d ® and d ¥’
be the corresponding differentials mapping g—g*. Since ® exp =expd®,
®’'exp=expd®’, and exp is bijective, d® and d®' agree on log(H). By
Corollary 9, log(H) generates g, so &=,

PROOF OF EXISTENCE. Let 7 and #* denote the projections from G X G*
onto G and G*, respectively. Now G x G* is a simply connected solvable group
with real roots. Since ¢ is continuous its graph is a closed subgroup G X G* (and
H is isomorphic with graph ¢ under the map h— (h, @(h)). Let L be the
analytic hull of graph ¢ in G X G* (see [11]) and ¢y == I - Then ¢ is a
smooth homomorphism L — G so that (L) is an analytic subgroup of G. But
(L) clearly contains H. Since H is analytically dense in G by Remark 2 above,
$(L)= G. Now ¢ induces a diffeomorphism L/¢~'(H)— G/H. If we knew that
¢ '(H)=graph¢ then dim(L)—dim(graph ¢)=dim(G)—dim(H). But then
dim(L) = dim(G) so that Ker ¢ would be discrete and ¢ a covering map. Since
G is simply connected this means ¢ is an isomorphism. Now let &=
7*|,-¢”': G—G*. Then ® is a smooth homomorphism and ®|,, = ¢



8 R. D. MOSAK AND M. MOSKOWITZ Isr. J. Math.

To see that ¢ '(H)=graph ¢, suppose (g, g*)EL and (g g*)=g€H
Then we show g* = ¢(g). Since the exponential map for G X G* is given by
(expa,expg-) we have (g, g*) = (exp X, exp X*)E L where X €g and X* Eg*.
But L is the smallest analytic subgroup of G X G* containing graph ¢, therefore
by Proposition 6 of Saito [13] we have (X, X*)=2¢(Y, Y*) where ¢ €ER,
Y.€q, Y{E€qg* and o(exp Y.)=expY? for i =1,...,n. Therefore ¢'(Y,)=
Y?* for all i. Since X=2+Y, and X*=324Y% we have ¢ (X)=Zte'(Y))=
24Y% = X* This means ¢(g)=g*.

CoroLLARY 11. Let G be a simply connected solvable group with real roots,
and let H be a closed subgroup with G/H compact. Then any automorphism a of
H extends uniquely to an automorphism B of G.

PROOF. a extends to a unique smooth homomorphism B by Theorem 10.
Now B(G)2 B(H)= H so B(G) is an analytic subgroup of G containing H.
Since H is analytically dense in G by Remark 2, B(G)=G. So Ker is a
discrete central subgroup of G and B is a covering map. Since G is simply
connected, B must be an automorphism of G.

As a final application of theorem 10 we prove a generalization of part of a
result in [7], namely Proposition 3.2 in the case of 1-cocycles. In what follows V
is a real vector space, G is a subgroup of GI(V), and cocyles are taken with
respect to the natural action.

COROLLARY 12. Let G be a simply connected solvable subgroup of GI(V) with
real roots and H be a closed cocompact subgroup. Then each smooth 1-cocycle
¢: H— V extends to a unique smooth 1-cocycle of G with values in V. In other
words, the restriction map H'(G, V)— H'(H, V) is an isomorphism.

Proor. Consider the simply connected solvable group G X4 V and its Lie
algebra g+aV. An easy calculation shows that Adg.,(X,w)=
(Ad, (X),(I — Ad, (X))v + g - w). In particular this implies that G Xs V has only
real roots. Now the maph—(h,¢(h)) is a smooth homomorphism of
H — G %,y V which extends by Theorem 10 to a unique smooth homomorphism
®: G—> G X, V. Let g and my be the projections on G and V respectively.
Then 7 - ® is a smooth homomorphism from G — G whose restriction to H is
the identity and so by Theorem 10 is the identity on G. Let ¢ = 7y - ®; then
0/ | n = ¢ and since ®(g) = (g, ¥(g)) and @ is a homomorphism, ¢ is a 1-cocycle.
Because @ is unique so is .
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